## **18.3 - Electric Current, Resistance, and Voltage**



## **Bell Work**

In the pictures below, in each picture state whether the circles will repel or attract.



## **Electricity**

When we observe how electricity behaves, we can use water flowing thru a garden hose as an analogy.



# **Electricity**

There are three variables which control how an electric circuit behaves:

- 1. Current
- 2. Resistance
- 3. Voltage

## **Electric Current**

#### **Electric Current**

**Electric Current is the continuous flow of electric charge.** 

There are two types of current:

- 1. Direct Current (DC)
- 2. Alternating Current (AC)

## **Electric Current**

**Direct Current (DC)** Electric charge that flows in one direction

**Example Battery in a Flashlight** 

**Alternating Current (AC)** 

A flow of electric charge that regularly reverses its direction

**Example** 

**Electricity within a home or school** 

## **Electric Current**

**Garden Hose Analogy** How does current relate to the garden hose?

Electrical current flow through a wire is similar to the flow of water through the hose.







## Conductors

#### **Conductors**

- Materials where charges can easily flow.
- Conductors have atoms that do NOT tightly hold electrons.
- These electrons can easily be drawn away to carry current.

**Examples** Metals such as copper, silver, aluminum



# Insulators

#### **Insulators**

- Materials that charge cannot easily flow
- Insulator atoms do not have freely moving electrons
- Does not allow electric charge to be transferred.

**Examples:** Wood and rubber are good insulators.

## Resistance

#### **Resistance**

- The opposition to the flow of charges in a material.
- A material's thickness, length, and temperature affect its resistance
- As temperature increases, resistance decreases. Increased temperature frees up and spreads out electrons that current flows through

#### Resistance

#### Garden Hose Analogy

How does resistance relate to the garden hose?

Electrical resistance opposes the flow of charges in a wire and the hose can restrict the flow of water thru bending of the hose or a kink in the hose.







More resistanc





# Voltage

## **Voltage**

In order for charge to flow in a conducing wire, the wire must be connected to a source of electrical energy.

#### **Example**

- 1. Battery
- 2. Generator

## Voltage

#### Garden Hose Analogy

How does voltage relate to the garden hose?

Electrical voltage provides the energy to push the electrons (Current) thru the wire, and a Pump provides energy to create the flow of water through the hose.



### Voltage



## **Current Flow**

#### **Current Flow**

# In order for charge to flow in a conducing wire, the wire must be connected in a complete loop





#### **18.3 Assessment**

**Question #1** List the two types of electric current?

Direct Current (DC)
Alternating Current (AC)

#### **Question #2**

Name two good electrical conductors and two good electrical insulators

#### **18.3 Assessment**

**Question #3** What are the three variables that affect resistance?

Thickness
Length
Temperature

**Question #4** What causes charge to flow?

A source of electrical energy causes charge to flow

#### **18.3 Assessment**

#### **Question #5**

# What is required to have continuous flow of charge in a circuit?

**Complete Loop** 

